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Abstract

Clouds are increasingly being used for running data-intensive scientific applications. However, science ap-
plications need to contend with the I/O and network performance characteristics of cloud environments.
Additionally, managing data effectively and efficiently over these cloud resources is challenging due to the
myriad storage choices with different performance-cost trade-offs, complex application choices, complexity
associated with elasticity and failure rates. In this paper, we evaluate various aspects of data management
strategies in cloud environments. Our evaluation is performed in the context of two frameworks - Hadoop
and FRIEDA and conducted on four cloud testbeds - FutureGrid, ExoGeni, Grid5000, Amazon. Our exper-
iments highlight the different performance implications of storage, file system, provisioning choices in the
context of data management strategies.



1 Introduction

Cloud resources are increasingly gaining popularity for data-intensive applications due to their ease of man-
agement and on-demand scalability. Infrastructure as a Service (IaaS) cloud services provide control over
provisioning of hardware resources and selection of software stacks.

Cloud resources present a number of challenges for data-intensive applications. First, scientific applica-
tions often have large amounts of data and data might be generated at experimental facilities (e.g., Advanced
Light Source, Large Hydron Collider) and the data needs to be moved to cloud environments. Previous work
has also shown that the I/O and network can often be bottlenecks in cloud environments [1]. Thus, it is
critical to manage both data management and movement carefully in cloud environments to alleviate this
problem. Second, cloud environments provide a myriad of temporary and permanent storage resources (e.g.,
transient local disks, block store volumes and object stores) and file systems. Each of these resources has
various performance, price and size trade-offs [1, 2]. Thus, users need to pick and compose their storage
choices. There is a limited understanding today on what might be optimal choices for an application.

Previous work has investigated various aspects of managing the compute resources and associated soft-
ware stack for scientific applications in IaaS environments [3, 4]. However, the work in storage and data
management has been largely focused on storage services for storing and retrieving data [5, 6, 7]. Applica-
tions running in cloud environments need to manage data transfer in and out of cloud resources, across the
nodes of the virtual cluster and across multiple sites. The transient nature of virtual machines, the different
performance and cost trade-offs of storage options, elasticity and failure rates make cloud data management
difficult. In addition, different applications have different data characteristics that can also affect the data
management decisions. For example, BLAST, a bioinformatics application relies on a database that needs
to be available to each task. In contrast, an image analysis pipeline that compares images with other images
in the set, lends itself to data partitioning across nodes. Thus, we need a cloud data management framework
that is not only flexible to application needs but provides ways to manage the cloud characteristics.

In this paper, we evaluate various aspects of data management strategies in cloud environments. This
evaluation is performed in the context of two frameworks for data-intensive applications on four cloud testbeds
(FutureGrid, ExoGeni, Grid5000 and Amazon). We use Hadoop [8] and FRIEDA [9] as the frameworks for
our testing. Hadoop is an open source implementation of MapReduce [10]. FRIEDA (Flexible Robust
Intelligent Elastic DAta Management) framework provides a two-level execution mechanism separating the
data control from the execution phases. We evaluate and compare data management strategies on different
machines and resource types. Specifically, in this paper:.

• We evaluate the effect of storage options and file systems on both FRIEDA and Hadoop application.

• We evaluate effect of different data management strategies that use provisioned resources intelligently
for data-intensive jobs.

• We provide a discussion on effective data management for scientific applications in cloud environments.

The rest of this paper is organized as follows. In Section 2 we describe the Hadoop and FRIEDA data
management frameworks. We describe our evaluation methodology in Section 3. We present our evaluation
in Section 4. We discuss the implication of the results in Section 5 and present related work in Section 6.
Finally, we present our conclusions in Section 7.

2 Background

In this section, we briefly describe both Hadoop and FRIEDA and the pipeline strategies implemented in
both frameworks.

2.1 Hadoop

Hadoop is a software framework for managing data-intensive applications in distributed environments based
on the MapReduce programming model. It is designed to scale up to thousands of nodes, where each node
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Grid‘5000 Amazon Web Ser-
vices

FutureGrid ExoGENI

Cloud
System

Snooze Amazon EC2 OpenStack Grizzly Eucalyptus with virtio

Instance
Descriptions

s1.small: 1 VCORE
1GB RAM, 40GB disk
s1.large: 4VCORES,
2GB RAM, 40 GB disk

m1.small: 1 VCORE,
1.7GB RAM, 160 GB
disk
m1.large: 2 VCORES,
3.7GB RAM, 840GB
disk

m1.small: 1 VCORE,
2GB RAM, 20GB disk
m1.large: 4 VCORE,
8GB RAM, 80GB disk

m1.xlarge: 1 VCORE,
4GB RAM, 64GB disk

Storage
Options

local disk local disk local ephemeral disk
and persistent block
store

local ephemeral disk
and iSCSI persistent
disk

OS Debian sid CentOS 6.5 Ubuntu 12.10 Debian 6(squeeze)
v1.0.10

Table 1: Summary of the test bed configurations.

offers both local computation and storage. Its fault-tolerant architecture manages both job and data failures
by replicating data to multiple nodes. We describe the components of Hadoop as per its release 0.20.0.
HDFS.The Hadoop distributed file system (HDFS) is a scalable, portable and distributed filesystem that
can store large files across multiple nodes. It achieves reliability by replicating the data across multiple
nodes. It achieves higher performance due to the awareness of the data location. This is helpful because it
enables local computation by avoiding expensive data transfers during computation.
MapReduce Engine. MapReduce engine consists of one JobTracker and several TaskTrackers. Client
applications submit MapReduce jobs to the JobTracker. The JobTracker pushes work out to available
TaskTracker nodes within a cluster and keep the processing as close to the data as possible. Since the
MapReduce engine run atop HDFS, the JobTracker knows which node contains the data, and the spatial
locality of the other nodes. If the work cannot be hosted on the actual node where the data resides, priority
is given to nodes in the same rack. This reduces network traffic on the main backbone network. If a
TaskTracker fails or times out, that part of the job is rescheduled on another node.
Scheduling. Hadoop has a pluggable scheduler with a number of scheduling algorithms. By default Hadoop
uses a FIFO scheduler. For this scheduler, a JobTracker pulls the oldest job first from the work queue. Other
scheduling algorithms, like fair scheduling and capacity scheduling, can also be used. Alternate schedulers
can be added based on the implementation requirements. We use Hadoop with the FIFO scheduler in our
evaluation.
Data Management in Clouds. In this paper, we use Hadoop for managing data on cloud platforms
for understanding both performance and scalability on different cloud configurations for provisioning of
resources. Hadoop provides a transparent data management framework that relies heavily on its filesystem
and the semantics of the MapReduce jobs. While using HDFS as its underlying filesystem, Hadoop distributes
the data to several nodes and schedules the map tasks accordingly. But due to its random distribution of data
blocks, an expensive data movement and transfer occurs during the shuffle and reduce phases of a MapReduce
job. A MapReduce job in Hadoop comprises of five stages. a) Job submission tells the JobTracker that the
job is ready for execution, b) Job initialization creates a list of tasks encapsulated within a job based on the
distribution of data across the nodes, c) Task assignment requires the JobTracker to assign a new task to
the TaskTracker, d) Task execution deals with the TaskTracker running the task assigned to it and reporting
the progress until the task completes and e) Job completion is notified to the JobTracker once the last task
for a job is complete.

It is evident that the job assignment and execution largely depends on the distribution and management
of data across the cluster. This is neither controlled by the user nor by the semantics of the program in
execution.
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2.2 FRIEDA

FRIEDA provides a two-level execution mechanism that separates the data control from the execution
plan [9]. The controller and partition generation algorithm set up the environment for data management
and program execution. The execution plane is based on the master-worker paradigm where the master and
the workers manage execution. The controller first starts the master and initializes it with the partition
strategy to be used for execution and then starts and initializes the workers. This separation of concerns
allows for flexible implementation of different data management strategies within the same framework as
suitable to specific application and resource needs.

Our focus in this paper is on high-throughput and data-intensive applications with negligible communi-
cation and hence we focus largely on the master-worker programming paradigm. The master decomposes
the problem into small tasks and distributes these tasks for execution on the workers. The communication
is between the master and the workers and the master is responsible for aggregating the partial results to
produce the final result. We assume that there is no specific task affinity to a certain machine i.e., tasks are
divided equally among all virtual machines (VMs).

Our framework supports two modes of data partitioning and distribution strategies: a) pre-determined
and b) real-time. In a pre-determined strategy, data is pre-partitioned and moved to the storage on individual
workers before the start of the execution. In real-time mode, each worker receives the data during execution.
Our previous work, contrasts the benefits of these two approaches [9].

2.3 Pipelining Strategies

We have developed two pipelining strategies which differ in the concurrent execution of the stages of the
pipeline for both Hadoop and FRIEDA.
Clubbed Pipeline: In the clubbed pipeline strategy, the last two stages are clubbed together into a combined
data transfer and execution phase where each stage gets exclusive access to the network. This is a more
conservative approach to pipeline data-intensive jobs.
Full Pipeline: Clubbed pipelines can result in under-utilization of resources when the requirements (move-
ment to HDFS + task execution) of individual subtasks do not utilize the provisioned resources to its full.
To avoid under-utilization, second stage of one subtask can be executed concurrently with third stage of
another subtask. In some cases, this could result in over-utilization of resources and can adversely affect the
performance.

As mentioned before, there are two types of placement strategies in FRIEDA - pre-determined and
real-time. In pre-determined mode, each individual chunk is transferred and then processed by FRIEDA.
Thus, the pre-determined mode implements the clubbed pipeline where the transfer and execution phases
are clubbed together. The processing of different chunks do not overlap with each other. In real-time mode,
data is transferred and processed at real-time by FRIEDA. This mode uses the full pipeline since internally
data transfer and processing of individual chunks can overlap and share network resources.

3 Methodology

In this section, we detail our experiment methodology with a focus on the platform setup, workloads, and
the experiment scenarios. Application use cases were performed on ExoGENI, FutureGrid, Grid5000 and
Amazon using the FRIEDA Execution framework. The applications and their input data were setup using
FRIEDA and run with real-time data partitioning unless otherwise specified.

3.1 Testbeds

Our platform setup comprises VMs from public and private cloud environments like Grid‘5000, Amazon Web
Services, FutureGrid and ExoGENI (see Table 1).
Amazon Web Services. We used Amazon EC2 to provision VMs for our public cloud experiments. We
used VMs of types m1.small and m1.large. Small instances are configured with one virtual core (VCORE),
1.7 GB RAM, and 160 GB local disk. Large instances have two VCORES, 3.7 GB RAM, and 840 GB local
disk. All instances are running the CentOS Linux distribution.
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App Instances Input Storage
Sizes Configurations

FutureGrid experiments

BLAST 24
m1.small
6 m1.large

2500
7500

local on worker
block storage on
worker(m1.large only)

local on master with NFS
block storage on master with
NFS

ImgComp24
m1.small
6 m1.large

50
100
200
400

Amazon EC2 experiments

ATLAS 24
m1.small
12 m1.large

400
800

local on worker

ImgComp24
m1.small
12 m1.large

50
100

ExoGENI experiments

BLAST 16
m1.xlarge

7500 local and iSCSI disks on
worker

ImgComp16
m1.xlarge

30
50

Hadoop
Wikipedia

16
m1.xlarge

10
30
60
90
180

Table 2: Science Application Experiments. All FutureGrid and Amazon EC2 experiments ran 24 concurrent
tasks which required a different number of VMs depending on instance type and IaaS provider. Storage
was either provided at the worker or using a shared filesystem on the master. ExoGENI experiments ran
16 concurrent tasks on 16 m1.xlarge instances. Input sizes for ATLAS and ImgComp are measured in total
gigabytes for all input files. BLAST input sizes refers to the total number protein sequences queries.

FutureGrid. We use a private FutureGrid reservation of OpenStack Grizzly. The deployment consists
of four compute servers and one OpenStack management server. Each compute server has two Intel Xeon
X5550 2.66 GHz CPUs (4 cores per CPU), 2.5 TB of local ephemeral disk storage, and 24 GB RAM. The
servers are interconnected using 1 Gb Ethernet. The management node has a block store service and 2.5 TB
of shared storage allocated for providing volumes over iSCSI.
ExoGENI. We also use the ExoGENI cloud testbed [11] that provides a widely distributed experimental
networked infrastructure-as-a-service (NIaaS) platform for evaluating data management and resource provi-
sioning optimizations. We use the Open Resource Control Architecture (ORCA) control framework software
for allocating and managing compute resources and layer 2 (data link layer) network links. Individual Exo-
GENI deployment consists of 16 xlarge instances, each with 64 GB local disk and 100 GB high-speed iSCSI
disks, 4 GB RAM and x3650 M4 servers with SandyBridge with 10G NICs. We provision all the VM in-
stances with a 1 Gbps network link unless stated otherwise. The VMs are managed using Eucalyptus with
virtio.
Grid‘5000. VM provisioning on Grid’5000 is managed through the Snooze [12] cloud management system
across 15 Dell PowerEdge R720 servers of the taurus cluster. Each server is equipped with two Intel Xeon
E5-2630 2.3 GHz CPUs (6 cores per CPU), 32GB of RAM, and 598GB of disk space with 10 Gb Ethernet
and running Debian wheezy with a 3.2.0-4-amd64 kernel. All VMs are using the virtio disk and networking
drivers. We have created two types of VM instances: s1.small and s1.large. Small instances are configured
with one virtual core (VCORE), 1GB of RAM, and 40GB of disk space. Large instances have two VCORES,
2GB of RAM, and 40GB disk space.
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3.2 Workloads

For understanding the performance of data-intensive jobs on clouds we consider two kinds of software in-
frastructure, each with a set of applications and benchmarks.
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Figure 1: (a) ImgComp with 24 concurrent tasks, time by input data size. This shows image comparisons
using 24 concurrent tasks on differing input data and virtual machine sizes. Local disk is faster than block
storage. NFS is significantly faster than data movement; (b) Large instances are slower than small in data
movement scenarios which is mirrored in our IOR MPIIO tests on 24 processes. In this test, we used 24
processes reading/writing a file per process to local disk which confirms that small instances are faster than
large for both read and write in this setup;

1) Hadoop: Hadoop provides a distributed computing framework on a cluster where users either have
very little or no control over the distribution of data. We use three applications: ‘filter’, ‘merge’ and ‘reorder’,
on large volumes of Wikipedia data. The filter application indexes individual Wikipedia pages, the reorder
application replaces <timestamp> tags with <date+time> tag and the merge application indexes individual
lines on a Wikipedia page. ‘Filter’ reads more data than it writes, ‘merge’ writes more data than it reads
whereas ‘reorder’ reads and writes equal amount of data. For all the tests, the amount of input data is same,
but the amount of intermediate and final output data differs.

2) FRIEDA: We use three workloads in our evaluation: ImgComp (Image Comparison), BLAST (Basic
Local Alignment Search Tool), and ATLAS (A Toroidal LHC Apparatus). FRIEDA provides a framework
to experiment with different storage and data management strategies through the use of various storage
devices, file systems and storage configurations. Our experiments focus on evaluating the different storage
choices (local, block store) in the context of scientific applications (ImgComp, BLAST, and ATLAS). We
demonstrate the impact of storage and file system options that drive the policies in FRIEDA.
Image Comparison Application (ImgComp). We use data from a light source beamline for ImgComp.
The application compares images to determine the similarity. It requires two files for every execution and
requires moving the image files to the cloud before operating on them. Data and compute-wise ImgComp
application deals with many image files for every computation. The size of each image file is approximately
11MB. The input size of a test refers to the total size in GB of all the image files to be compared.
Basic Local Alignment Search Tool (BLAST). BLAST, a bioinformatics application, allows comparison
of primary biological sequences for different proteins against a sequence database. We measured input size
by the total number of database protein sequence queries. BLAST test cases had two input sizes: 2500
and 7500 protein sequence queries. These were split into files that contained 10 sequences each. Each
task execution received a single input file which was used to query against a reference database residing on
configured storage.
ATLAS. We ran an ATLAS user analysis application to enable parallel processing of D3PD [13] ATLAS
datasets. The dataset we use is composed of multiple D3PD files. Each task execution requires one dataset
and outputs a set of histograms. The size of each D3PD file is approximately 1.5GB. The input size of a
test refers to the total size in GB of all the D3PD files to be processed.

5



3.3 Scenarios

In our experiments, we consider the following storage classes of devices: a) local disks on virtual machines
which are pre-mounted at boot-up time, b) block store devices where storage is exposed as a physical device
that end-user has to prepare (i.e., create partitions and format) and, c) object stores where the user might
specify that the output should be stored. The first two classes might have size limits associated with them
as configured by a site administrator.

In the application experiments in Section 4.1, we ran 24 concurrent tasks which required a different
number of VMs depending on instance type and IaaS provider. Storage was either provided at the worker
or using a shared filesystem on the master. On FutureGrid, we ran ImgComp and BLAST test cases (Table
2) with 24 concurrent tasks varying input sizes, storage types and VM instance types (24 m1.small or 6
m1.large). Storage was was either provided locally on the worker or remotely on the master over a network
file system (NFS). A limitation of 10 block store volumes prevented us from testing 24 m1.small workers on
FutureGrid. On Amazon EC2, we ran ImgComp and ATLAS test cases (Table 2) with 24 concurrent tasks
across 24 m1.small and 12 m1.large instances. Local ephemeral disks on the workers were used in all the
experiments.

Input files were placed on block storage and attached to the FRIEDA master during data placement.
FRIEDA’s real-time data partitioning behaves differently with local and shared file systems. If the workers
used a local file system, the FRIEDA master delivered the file via secure copy upon a worker request.
However, in the case of NFS, the master hosts an NFS server mounting the block storage volumes containing
the input data. In this case, all FRIEDA workers participate as NFS clients obtaining input files via NFS.
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Figure 2: ImgComp on Amazon EC2 m1.small and m1.large instances. Execution time is faster on m1.large
instances than on m1.small instances.

Our Hadoop evaluation on Grid‘5000 investigates the Hadoop performance using three file systems: NFS,
GlusterFS, and the Hadoop Distributed File System (HDFS). To conduct the experiments we have deployed
Hadoop v0.20.2 on the hercule cluster. The first hercule server acted as the JobTracker and the file system
(NFS and GlusterFS) master services. Each task tracker was configured with 10 maps and 1 reduce. The
block size was set to 128MB. We run our Wikipedia data processing application for each file system with 50,
100, and 150GB input size. In total 60 maps and 3 reduce slots were used.

On ExoGENI, we used 16 m1.xlarge compute instances for running both ImgComp and BLAST appli-
cations as well as Hadoop Wikipedia processing (Table 2). We used both local and iSCSI disks to evaluate
relative storage performance and scalability.

4 Evaluation

In this section, we describe the results of our evaluation. Specifically, we cover the results from our experi-
ments:
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Figure 4: BLAST executions ran 24 concurrent processes varying the storage scheme. (a) NFS is considerably slower
than data movement to workers. The worst case scenario is sharing the master’s local disk over NFS. The larger
instance size of the master cuts the execution time in half. (b) Execution time scales linearly with input size with
local disk being slightly faster than block storage.

• We evaluate the storage and filesystem options with the FRIEDA and Hadoop applications on all four
testbeds

• We study the data management strategies (pre-determined and real-time) in the context ImgComp
and BLAST.

• We evaluate the effects of network provisioning on ImgComp and BLAST applications.

• We study the effects of pipelining in both Hadoop and FRIEDA.
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4.1 Effect of Storage and FileSystem Options

In this section, we discuss the effect of different storage options of ImgComp, BLAST, ATLAS and Hadoop
applications on the four testbeds.
ImgComp ImgComp is a read-intensive application. The image comparison algorithm receives two beamline
image files as input and outputs whether a match was found.

Figure 1 shows the results of running 24 concurrent tasks and plots the execution time by input data
size for the differing compute and storage configurations from Table 2. Execution time scales linearly as the
data size increases.

Figure 1a shows the results on FutureGrid. It shows that overall NFS (BS+NFS) was faster for all input
sizes and instance types than transferring data to the worker. Among cases where data is on the worker
(BS/Worker, local/Worker), local disk is faster than block storage. In the NFS cases, large instances were
slightly faster than small.

For ImgComp, the cost of data transfer makes a difference as the input data size increases. The worst
case for ImgComp, was using large instance types and moving data from master to block storage volumes on
workers (m1.large (BS/Worker)). Data movement test cases seem to scale at the same rate until 400GB
input size. At 400 GB, m1.large (local/Worker) performance starts closing in on m1.large (BS/Worker).
This could be point at which the network begins to get saturated by data movement and writing to the shared
block store server. In this case, small instances were faster than large instances.

To understand the cause of this better, we ran IOR MPIIO read/write tests with 24 concurrent processes
(see Figure 1b). The tests wrote a file per process to local disk. Small instances outperformed large on
both read and write. This is likely due to the interplay of the virtual machine load with the virtualization
overhead coming out of a single virtual machine. This might be the result of contention between the four
processes that are writing to the VM local disk in the case of large instances that we don’t see in the small
instances.

Figure 2 shows the ImgComp performance on Amazon EC2 using 24 concurrent processes on m1.small and
m1.large instances. As it can be observed, execution time is faster on m1.large instances and is proportional
to the input data size. This is different than the results we observed on Futuregrid.
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Figure 5: ATLAS data processing on m1.small and m1.large instances for 400 and 800 GB of data. Execution
time on m1.large instances is faster than on m1.small instances and doubles with increased data size.

A closer inspection of the VM specifications shows that Amazon instance types are configured differently
than the Futuregrid reservation. Amazon VMs have less RAM per core than their Futuregrid counterparts.
Furthermore the Futuregrid m1.small VCORE counts matched and the m1.large did not. Amazon m1.large
VCORE counts where half (2) that of Futuregrid (4). In keeping our experiments consistent by always
running the science applications with 24 concurrent processes, this difference in configuration resulted in
running 12 VM instances on Amazon versus 6 for Futurgrid. This reduced the contention for disk as seen
previously in the Futuregrid experiments which resulted in the m1.large local disk experiments being slower
than m1.small.

We also used different storage options at ExoGENI to evaluate different data management strategies.
Figure 3 shows that both data management strategies for ImgComp application processing 30GB of input

8



 0
 5

 10
 15
 20
 25
 30
 35
 40

50 100 150
E

x
e

c
u

ti
o

n
 t
im

e
 (

=
 m

in
)

Input size (= GB)

NFS
GlusterFS

HDFS

(a) filter

 0

 20

 40

 60

 80

 100

 120

 140

50 100 150

E
x
e

c
u
ti
o
n

 t
im

e
 (

=
 m

in
)

Input size (= GB)

NFS
GlusterFS

HDFS

(b) reorder

 0
 50

 100
 150
 200
 250
 300
 350
 400

50 100 150

E
x
e

c
u
ti
o
n
 t
im

e
 (

=
 m

in
)

Input size (= GB)

NFS
GlusterFS

HDFS

(c) merge
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data have better performance on local as compared to iSCSI disks. The results also suggest that iSCSI disk
performance can be improved by selecting the appropriate data management strategy.
BLAST BLAST is a memory-intensive application. A single input file with a list of protein sequences is used
to query a 6 gigabyte reference database. The total size of the largest input case (7500 protein sequences) is
3 megabytes. All executions ran 24 concurrent tasks with varying storage scheme and virtual machine type.
Most of the experiments failed to fit the 6 GB reference database in memory due insufficient RAM on the
VMs.
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(b) Reorder Benchmark
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(c) Merge Benchmark

Figure 7: Performance of Hadoop applications on different storage options without pipelining strategies.
For large datasets without pipelining, write-intensive operations like (b) reorder and (c) merge perform
significantly worse on iSCSI disks than on local disks. But, iSCSI disks can process larger datasets due to
extra storage.

Figure 4 plots BLAST protein queries total execution time by total number of protein sequences. Note,
the time scale between the small (left figure) and large (right figure) instances are very different. The range
of execution time for small instances was between two and eighteen hours while large instances all finished
in less than two hours.

BLAST performance is very slow on small instances which is in part due to insufficient memory for the
6 GB BLAST reference database. Data sharing with NFS is considerably slower than data movement to
workers. Due to these exceedingly long run times, the input size of 7500 protein sequences for local disk over
NFS test cases were not run.

In cases where data was shared through the NFS server, sharing the master’s local disk over NFS can lead
to contention with the BLAST reference database. We were able to cut the time by a little more than half
from 18 to 8 hours by changing the master to a large instance somewhat alleviating this contention. The lower
performance can be explained by the limited memory and CPU resources available on the small instances.
There is contention for memory resources between the NFS clients and BLAST database. Increasing the
instance size of the master alleviated some of this contention. The block storage over NFS was dramatically
faster than local disk over NFS at 4 hours versus 8 and 18. Moving the I/O off of the VM to block storage
reduced resource contention inside the VM.

Figure 4 shows that for large instances tripling the input size tripled the execution time and that NFS
is slightly faster than transferring data to the worker. Large instances have more memory and execute four
workers (1 per core). Having four workers was an advantage for the BLAST application which benefited
from sharing the in memory BLAST database.
ATLAS. The ATLAS application was only run on Amazon. Figure 5 shows the ATLAS execution time
on m1.small and m1.large instances on Amazon EC2. As it can be observed, execution time is faster on
m1.large instances and increases proportionally with the data size. This demonstrates that the application
benefited from the extra memory per core provide by the Amazon m1.large instance type.
Hadoop. Figure 6 depicts the results from our Hadoop experiments on Grid5000. As it can be observed,
HDFS performs the best in all the experiments. This is not surprising Hadoop applications can greatly
benefit from the HDFS local read optimizations and data locality. However, when considering the reorder

10



and merge operations for smaller inputs (i.e., 50 and 100 GB), NFS and GlusterFS do not yield significant
performance degradation. On the other hand, filtering performs significantly better using HDFS for all
inputs as it is dominated by reads. The reorder operation, performs similarly for both NFS and GlusterFS
for all input sizes, with GlusterFS beeing slightly better. Finally, when considering the merge operation,
GlusterFS outperforms NFS at larger inputs (i.e. 150GB) due to its better write performance.

We evaluated Hadoop performance on both local and iSCSI disks at ExoGENI. The total local disk space
was around 1 TB (64 GB on 16 VM instances), but we could go only upto 120 GB of total input data
with total DFS usage of around 600 GB during execution. Figure 7 shows comparison of the three Hadoop
applications (filter, merge and reorder) with local and iSCSI disks without any pipelining strategy. For filter
applications, the difference between iSCSI and local disks is minimal since this application reads a lot but
has minimal writes. Though we observe that at larger data sizes, the gap between local and iSCSI disks
starts increasing. In contrast for reorder and merge applications, we observe that the iSCSI disks start to
perform poorly when handling larger amounts of input data size. Reorder and merge are write-intensive
applications and are hence affected by the network latency to the shared network storage.

4.2 Efffect of Data Management Strategies
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Figure 8: Performance variation of ImgComp and BLAST using the two different data management strategies
in FRIEDA on ExoGENI. Whereas BLAST achieves significant performance improvement using real-time
data management, ImgComp achieves similar performance with both strategies due to high provisioned
network bandwidth.

Figure 8 shows performance of ImgComp and BLAST for the two data management strategies in FRIEDA
on ExoGENI. The results show ImgComp execution with 30GB of total input data and BLAST execution
with 7500 protein sequences. For ImgComp, both strategies have almost similar performance. Real-time
partitioning performs 2× better than pre-determined partitioning for the BLAST workload due to higher
degree of load imbalance between tasks in the workload.

4.3 Effect of Network Provisioning

Figure 9a shows the impact of bandwidth provisioning on BLAST and ImgComp. In this experiment, BLAST
processes 7500 sequences and ImgComp processes 50GB of data. It shows that BLAST has minimal or no
gain from network provisioning of 100 Mbps vs 1Gbps since it is a compute- and memory-intensive appli-
cation. The ImgComp application shows significant improvement of 2.5× with higher bandwidth network
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Figure 9: Effect of variable network provisioning. a) Applications like ImgComp see significant improvement
in performance for high provisioned network. b) Evaluation of ImgComp at different sites and with different
network bandwidths shows that even with lower bandwidths higher performance can be achieved at BBN
with similar instances due to better local I/O performance.

provisioning since the application moves a large amount of data. Therefore, it is important for systems to
perform intelligent provisioning based on application profiles.

Figure 9b shows the performance ImgComp processing 30GB of input data at two different sites with
different provisioned network bandwidth. The results show that with same instance-types and provisioned
network, one site outperforms the other. This may be attributed to higher disk throughput at the BBN site.
This suggests that if inter-site performance varies for similar instance-types, cost of provisioning can still
be reduced without sacrificing application performance by intelligently selecting appropriate resources (for
example, lower bandwidth networks at BBN instead of Duke).
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Figure 10: Times to transfer data to HDFS using the two pieplining strategies. Since full pipelineing strategy
shares network resources for data transfer and execution stages of the pipelines, it takes longer for transferring
chunks of data to HDFS using the full pipelining strategy as compared to the clubbed pipelining.
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4.4 Effect of Pipelining

Our initial tests showed that data-intensive Hadoop jobs tend to fail on VMs due to various errors [14, 15].
The errors included checksum errors, missing blocks and disk space. Our pipelining strategy streams data
into each stage of the pipeline as required thereby increasing the stability, scalability and performance of
data-intensive jobs.

We divided the total data into smaller sizes of approximately 15 GB for a Hadoop cluster with worker
nodes of approximately 64 GB of local storage. Each data set is then processed in separate pipelines.
Figure 10 shows a comparison for transferring data to HDFS using the two pipelining strategies. Full
pipelineing strategy shares network resources for data transfer and execution stages of the pipelines. This
results in lower transfer rates using full pipelining as compared to the clubbed pipelining. But Figure 11
shows that the overall performance of the Hadoop benchmarks improve using full pipelining strategy. This
is due to higher overlap between data transfer and job execution phases which slows the individual data-
transfer phase but the overall performance is improved. The results also depict that pipelining improves
both performance and scalability of the data-intensive Hadoop jobs as compared to running the jobs without
pipelining. The performance of Hadoop applications on cloud environments improved by a factor of almost
5× by pipelining in comparison to normal execution in most cases. The filter application shows better
performance with direct use of iSCSI disks rather than using pipelines. This is because filter reads a lot of
data and reduces the data size in the map phase. Hence, there is less data that is getting shuffled in the
shuffle/reduce phase of the job and thus, pipelining offers no benefits.
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(b) Reorder Benchmark
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(c) Merge Benchmark

Figure 11: Effect of pipelining on Hadoop applications. For read-intensive Hadoop job (a) pipelining improves
scalability but the performance is lower as compared to directly using iSCSI disks for small to moderate data-
sizes. For write-intensive Hadoop jobs (b) and (c) pipelining performs and scales better than using iSCSI
disks due to efficient management of network and storage resources by reducing the number of shuffle/reduce
operations for an individual sub-task.

Figure 12 shows the results of pipelining the stages in the ImgComp application in FRIEDA. For the
ImgComp application, using the pre-determined data management strategy and pipelining the transfer and
execution stages of the application lifecycle improved the performance with increased data size as compared
to directly using the iSCSI disks. The figure shows that pipelining continues to follow the linear trend
whereas external storage (iSCSI disks) starts performing poorly for larger data sizes. This is due to the
network bottleneck between the compute nodes and the external storage. Local disks are not suitable for
large data sets due to the limits on size.

5 Discussion

In this paper, we studied the effect of data management strategies for scientific applications running in cloud
environments over a number of resource and application characteristics. Our experimental evaluation on four
cloud environments running scientific applications in FRIEDA and Hadoop demonstrate that application’s
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Figure 12: Effect of pipelining on the Image Comparison Application. Local disks do not scale whereas iSCSI
performance degrades with increasing data size due to lower disk speed and large volume of data transfer
over unprovisioned network. Pipelining shows a linear trend by utilizing the network and disk resources
efficiently.

characteristics need to be considered in conjunction with resource characteristics. The summary of our
results are:

• It is important to consider combined storage and compute provisioning due to the interplay between
I/O and memory for different application patterns.

• The appropriate storage choice combined with filesystem is highly application-dependent and depends
on I/O patterns, setup available on site, scale of VMs and data size.

• Using effective data management strategies over provisioned network can significantly improve the
performance of data-intensive applications.

• Performance of local disks on VMs over provisioned networks outperforms external storage devices but
are often limited in size in cloud environments.

• The behavior of different cloud instances can also vary across various cloud providers and between
different sites of a cloud federation.

• If a large data-intensive job can be divided into smaller tasks, then pipelining improves the overall
performance of the application.

• A combination of parallel and pipelined processing scales and performs better than just adding more
compute nodes which might result in network and disk saturation.

In this section, we discuss various aspects of a) resource provisioning and b) data management. Finally,
we summarize what future data and application management frameworks for science applications on clouds
need to consider.

5.1 Resource Provisioning

In cloud environments, resources are provisioned based on the need of the application. Since network is a key
bottleneck in virtual cloud environments, provisioning network resources is important for obtaining better
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performance. Currently, network provisioning is only provided on the ExoGENI testbed. The performance
of applications can be improved when the network between the external storage and the VM is provisioned.

Today, there are limited storage provisioning options in the cloud environments. The interplay between
storage and network provisioning will need to be considered when handling large data volumes in cloud
environments. Cloud systems will need to provide more flexible, real-time, on-demand resource provisioning
mechanisms.

5.2 Data Management

We use Hadoop and FRIEDA as the two data management frameworks for executing applications on clouds.
Hadoop’s data management makes it suitable to process data locally due to Hadoop’s locality-aware compu-
tation where the the data to be processed is selected based on its locality to a node. But scientific applications
running on cloud environments need flexibility in both resource management and data management in terms
of file formats, input sources and output sinks. FRIEDA provides this flexibility by separating the control
from the execution and also allows executing various applications without any source code modification.
Cloud environments require data management frameworks to be agile and intelligent and adapt to various
resource conditions and application initiated change such as scaling of resources.

Running data-intensive applications on cloud environments require data to be partitioned and distributed
across resources. These applications can transfer large data-sets efficiently over provisioned networks. Dif-
ferent data placement strategies as provided by FRIEDA can utilize these resources based on the type of
application to improve the performance.

Scalability, performance and reliability are issues for data-intensive applications in virtual environments.
We show that data-intensive Hadoop jobs tend to fail more frequently when run on cloud environments even
at modest data sizes [15, 16]. We used a set of pipelining strategies by dividing a job into smaller sub-tasks
and splitting a single job into different stages. Pipeline effectively uses provisioned resources, specifically
network resources in our case.

Our results also show that for smaller data-sets, performance is poor with pipelining. This can be
attributed to pipeline overheads when there isn’t sufficient overlap between the data transfer and computation
phases.

5.3 Design of Data management frameworks

Our work highlights three important things that are to be considered in future for scientific applications
running in cloud environments. First, the performance of applications is affected by a large number of
factors including application characteristics. Thus, frameworks such as FRIEDA that allow users to plug-
in application- and resource-specific policies are vital. Second, dividing a large data-intensive job into
smaller tasks and pipelining the data-transfer and execution phases based on available storage and network
bandwidth helps in improving both scalability and performance. It is important to use resources effectively
by intelligent provisioning and data management rather than over-provisioning and under-utilizing them.
Finally, executing the application with different configurations and associated models are needed to build
automated planning and execution frameworks. The ease of use of the FRIEDA framework makes it easy to
configure and study the various choices (as in our experimentation).

6 Related Work

Many frameworks, programming models, algorithms and tools have evolved to manage data-intensive ap-
plications in cloud environments. However, to the best of our knowledge there is no previous work that
studies and manages the interplay of provisioning, partitioning and pipelining for data-intensive applications
in cloud environments.
Provisioning. Wang et al. [17] showed that virtualization causes abnormal variations in network perfor-
mance on cloud platforms. A study on network failures and their impact on various applications is shown
in [18]. This shows the importance of provisioning network resources for guaranteeing performance on cloud
environments. Previous work has looked at heuristics, algorithms and techniques[19, 20, 21, 22] for resource
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provisioning and orchestrating end-to-end applications in cloud environments. Power-aware resource provi-
sioning in cloud environments has been studied for reducing energy consumption of datacenters [23]. Efficient
resource provisioning algorithm for scientific workflows in clouds has been proposed in [24]. In this paper,
we study the impact of provisioning based on application needs.
Hadoop on Clouds. Hadoop [25] [10] and MPI are used to manage scalable large-scale parallel ap-
plications. Fadika et al. [26] evaluates Hadoop performance on HPC platforms for data-intensive science
operations. There have been many proposals to improve the existing MapReduce framework for adaptive
data placement on heterogeneous Hadoop clusters [27]. Modifications to the Hadoop data management
system [28] and in-memory computations [29] have been proposed to improve performance on Cloud envi-
ronments. However, there is still a lack of generic techniques to distribute data and execute applications.
Apache Hadoop YARN [30] is shown to provide better and stable performance than previous versions of
Hadoop when running on cloud platforms. Appuswamy et al. [31] evaluate scaling up and scaling out mech-
anisms for running analytic jobs using Hadoop for achieving better and cost-effective performance on clouds.
But all of these techniques require modifications to application code or middleware. Our work focuses on
mechanisms to improve performance of an application without modifying it. Our strategy involves an intel-
ligent interplay of provisioned and unprovisioned resources combined with different data management and
distribution strategies.
Data Management. Distributed data management has been considered in the context of grid environments
including tools for optimized wide area data transfer [32] [33], replica management [34], metadata catalog
and data discovery systems [35, 36]. Distributed storage systems like MosaStore [37] provide configurable
application-specific storage optimizations for scalable data management. Cost-effective and high performance
data management for geographically distributed datacenters has been proposed in [38]. Recent research
has also focused distributed data management by facilitating interoperability between clouds and other
heterogeneous systems [39]. StorkCloud [40] provides optimized data transfers as a cloud service. In our
work, we describe a combination of data management and pipelining strategies for moving the data within
and across cloud sites over provisioned resources in order to obtain better performance and lower failure
rates for data-intensive applications.
Workflow tools. Scientific workflow management systems [41] manage huge amount and complex processing
of data. Deelman et al. [42] highlights several challenges in data management for data-intensive scientific
workflows. But, none of the wokflow tools provide flexible mechanisms to partition the data. Moreover,
workflow tools rely on existing locations of data and/or move data where there are dependencies. FRIEDA
supports only data-parallel tasks. However, FRIEDA provides a flexible interface that can be used by
workflow tools to control parts or all of its workflow execution.

7 Conclusions

Infrastructure-as-a-Service (IaaS) cloud model provides a flexible and composable model to manage resources
for scientific applications. However, the storage options with different characteristics and the transient nature
of the environment result in unique storage and data management challenges. In this paper, we evaluate
various data management strategies in the context of FRIEDA and Hadoop to understand storage, file
system and provisioning options. We discuss the various factors that play into data management policies
on cloud environments. We run three scientific applications using FRIEDA and three data operations using
Hadoop on four cloud test beds - FutureGrid, ExoGENI, Grid‘5000 and Amazon EC2. Our results showed
that a combination of different data management strategies and provisioning techniques resulted in improved
performance and scalability.
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